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Abstract

Background: Phenotypic diversity arises from the process of development and is
shaped by genomic variation in plants. However, the genetic basis of growth
dynamics remains poorly understood in maize.

Results: Here, we analyze 679 maize inbred lines derived from a synthetic CUBIC

population with approximately 2.8 million SNPs, leveraging high-throughput



phenotyping to capture 1,002,240 RGB images across 18 growth stages. We quantify
67 image-based traits (i-traits), revealing distinct dynamic patterns throughout
development. Genome-wide association studies identify 857 quantitative trait loci
(QTLs) influencing growth variation, with 88.6% classified as period-specific
dynamic QTLs exhibiting modest effects, and 11.4% as conservative QTLs with
sustained effects. Notably, 1.5% of cryptic pleiotropic QTLs spanning different
growth stages suggest genetic relocations during development. These QTLs enhance
heritability estimates for mature traits by an average of 6.2%. We further characterize
the novel function of key genes linked with these QTLs, including BRD1 with the
pleiotropic effects on plant height and perimeter of convex hull and ZmGalOx1 with
the broad-spectrum regulation of plant architecture. Developmental rewiring of
epistatic networks shapes maize growth, underscoring the vitality of temporal genetic
regulation. Trajectory modeling of i-traits across periods decodes the growth variation
patterns, supporting the ontogenic hypothesis driven predictive breeding strategies.
Conclusion: The findings elucidate the genetic architecture underlying growth
dynamics from a spatial-temporal perspective, offering novel insights for maize
improvement.

Key words: Maize, Image-based traits, Growth dynamics, Temporal genetic

regulation, Trajectory modeling, Breeding design



Background

Maize (Zea mays) is a globally vital crop, serving as a critical source of food, feed,
and industrial raw materials. With rising global demand for maize, continuous
improvement of agriculturally important traits is essential to meet the needs of a
growing population [1, 2]. Deciphering the genetic basis of these agronomic traits and
cloning their underlying genes remains an important measure to address these needs
[3]. Over the past decades, the maize research community had made significant
contributions in functional genomics, identifying hundreds of genes and natural
variants responsible for agronomic traits [4]. Most agronomic traits are quantitatively
inherited, conforming to the polygenic hypothesis, wherein phenotypic variation
arises from the cumulative effects of numerous minor loci and their interactions [5].
For instance, the maize grain yield is estimated to be influenced by thousands of
minor-effect genes [6], suggesting that a substantial proportion of heritability remains
unexplained. The omnigenic hypothesis, originally proposed in human genetics, offers
a framework for interpreting complex traits. According to this hypothesis, trait
variation is governed by two interconnected gene networks: (1) core genes with direct
biological relevance to the trait, and (2) peripheral genes that influence the trait
indirectly through interactions with core genes or by modulating related biological
processes [7]. This paradigm may also prove valuable for dissecting complex
agronomic traits in plants. Traditionally, studies had predominantly focused on the

endpoint traits measured at harvest, surely indirectly shaped by underlying growth



attributes. However, the genetic architecture and functional importance of these
dynamic growth-related traits remain poorly understood.

Advances in high-throughput phenotyping (HTP) platform have enabled
large-scale and dynamic characterization of plant growth attributes, providing
unprecedented opportunities to decode the genetic basis of agronomic traits [8].
Time-resolved genetic studies in Arabidopsis, barley, Brassica napus, cotton, and
wheat have revealed that many quantitative trait loci (QTLsS) exhibit the temporal
specificity with shifted effects across developmental stages [9-15]. In maize, recent
efforts have leveraged the UAV-based phenotyping and mathematical modeling to
identify genomic regions associated with vegetative growth and flowering [16, 17]. A
landmark study of 368 diverse inbred lines subjected to drought stress uncovered
1,529 QTLs linked to image-based traits, leading to functional validation of
ZmcPGM2 and ZmFAB1A as regulators of drought-tolerance in maize [18]. Overall,
the above-mentioned studies have paid relatively more attention to the discovery of
genes using the populations with less relevance to crop improvement.

In the present study, we employed the maize CUBIC (Complete-diallel plus
Unbalanced Breeding-derived Inter-Cross) population that had been used as a
powerful resource for genetic studies, heterosis exploration, and genomic breeding
[19-21], to investigate growth dynamics across vegetative and reproductive phases.
Using HTP platform, we identified 67 image-based traits (i-traits) over 18 continuous
growth periods. Our study revealed diverse growth patterns among inbred lines and

identified a comprehensive set of QTLs with distinct functional roles, which deepen



insights into the dynamic genetic architecture of quantitative traits and recover a
substantial fraction of "missing heritability" overlooked by traditional trait-genome
association approaches. The prevalent epistatic interactions play a pivotal role in
shaping developmental status and identify ZmEBF4 as a causal gene governing
early-stage plant height. Based on the understanding of dynamic genetic nature for
growth traits, we propose the ontogenic hypothesis by extending omnigenic
hypothesis toward the temporal dimension, indicating the complex traits were
determined by panoramic spatial-temporal interactions between key genes and
epistatic pairs. Driven by ontogenic hypothesis and mathematical modeling, we
provided a novel hybrid breeding strategy via asymmetric growth trajectory design in

parents for future crop improvement.

Results

Diverse and dynamic i-traits capture the maize growth variation

To systematically characterize the maize growth diversity, we cultivated 679
randomly selected lines from the CUBIC population in an outdoor greenhouse
(Additional file 1: Figure S1a). Using a plant-to-sensor HTP platform, we captured >1
million images across 18 growth stages from seedling stage (4, 38 days after sowing)
to mature stage (R4, 95 days after sowing), obtaining 67 i-traits through an integrated

computational pipeline (Fig. la; see Methods) [18, 22-24]. This approach enabled



dynamic quantification of growth variation across different developmental stages,
rather than relying solely on endpoint measurements at harvest.

The i-traits encompassed four categories — biomass, color, morphology and
texture — providing comprehensive coverage of RGB-based plant features throughout
development (Additional file 2: Table S1). Clustering analysis of 679 inbred lines
revealed that agronomic trait profiles were distinct from patterns of genomic variation
but similar with that of i-traits (Fig. 1b; Additional file 1: Figure S2), suggesting that
i-traits may bridge genomic architecture and endpoint phenotypic causality following
the central dogma in genetics.

Coefficient of variation (CV) analysis classified 67 i-traits into two groups based
on bimodal distribution (Fig. 1c; Additional file 1: Figure S1b). The Group-I (lower
variance than agronomic traits; p=9.6x107) was enriched for texture related features,
whereas the Group-1l (higher variance than agronomic traits; p=1.3 x 10
predominantly comprised morphological traits (Additional file 2: Table S2). For
developmental staging, we partitioned the 18 time points into three stages, as early
(V4-V10), middle (V10-R1), and late (R1-R4) (Additional file 1: Figure Sic;
Additional file 2: Table S3).

Hierarchical clustering of normalized i-traits across periods revealed three distinct
dynamic patterns: increasing, decreasing, and stable. (Fig. 1d). Traits of the increasing
type (e.g., plant height and biomass) represented a cumulative growth pattern. In
contrast, decreasing-type traits (e.g., perimeter/projected area ratio, PAR) primarily

reflected morphological changes (Additional file 2: Table S4). These increasing traits



also showed significantly higher heritability, especially in late developmental
stages—a pattern that may indicate distinct genetic regulation underlying different
i-trait types (Additional file 2: Table S5). Principal component and correlation
analyses further disclosed the phenotypic specificity among the three i-trait growth
types (Additional file 1: Figure S1d-e), laying a foundation to dissect how dynamic

features mediate genotype-to-phenotype relationships in maize.

Temporal dynamics of genetic architecture underlying i-traits

Variance component analysis revealed that developmental time accounted for the
majority of global i-trait variations (55.4%), while exerted their strongest influence
during late growth phases (Additional file 1: Figure S3). This suggests that early
subtle genetic differences become magnified through subsequent growth, ultimately
shaping the mature phenotypic diversity. Over 90% of i-traits showed substantial
heritability (broad-sense heritability>0.5), with heritability significantly increasing in
late developmental periods (Additional file 1: Figure S4; Additional file 2: Table S5),
consistent with previous observations in maize [22].

Using 2,822,486 high-quality SNPs (MAF=0.05), we performed genome-wide
association study (GWAS) for all 67 i-traits across 18 time periods, identifying 857
QTLs (p<3.5x107) (Fig. 2a). On average, two QTLs (range: 1 to 22) were identified
for each i-trait, while 47 QTLs (range: 25-125) for each development stage were
found (Additional file 2: Table S6). The number of detected QTLs peaked during

middle developmental stage (125 QTLs at stage 7), significantly exceeding early- and



late-stage counts (p=8.4x10* and p=6.6x103, respectively; Additional file 1: Figure
S5a). Notably, the late-stage QTLs exhibited larger effect sizes than the early or
middle-stage ones (Additional file 1. Figure S5b), including 10 major QTLs with
phenotypic variance explained (PVE) over 10%. The QTL confident intervals spanned
0.05-44.03 Mb, 82.3% of which overlapped with genic regions (Additional file 1:
Figure S5c). The identified QTLs across multiple stages were clustered into 24
genomic hotspots showing strong developmental specificity and enrichment for
transcription factors (p<0.05; Additional file 1: Figure S5d-e).

For each i-trait, the original QTLs across development periods were merged into
consensus QTL based on the colocalization analysis (+°>0.2). Totally, 450 consensus
intervals were obtained and further integrated into 263 unique genomic regions
putatively regulating growth-related i-traits (see Methods, Additional file 2: Table S6).
These QTLs exhibited two temporal patterns: (1) Dynamic QTLs (88.6%):
Stage-specific associations (e.g., a chromosome 7 locus associated with Heywood
circularity exclusively in late periods; Fig. 2c). (2) Conservative QTLSs: Persistent
effects across stages (e.g., a chromosome 4 region mapped by plant compactness
throughout development; Fig. 2d).

Functionally, most QTLs were monotropic (associated with single i-trait), but
24.7% showed approximate pleiotropy—including four "cross-period pleiotropic™ loci
with stage-shifting effects (Fig. 2b; Additional file 2: Table S7). For example, a
chromosome 1 QTL were associated with early-stage plant height but switched to be

significantly associated with Heywood circularity after floral transition (Fig. 2e),



illustrating how developmental context reshapes the genetic contributions to the plant
growth.

Conservative QTLs, though fewer in number, explained significantly more
phenotypic variance than dynamic QTLs (p<6.9x107°), while pleiotropic loci
outperformed monotropic QTLs in explained variance per locus (p<4x10®) (Fig. 2f).
Combinations of conservative and pleiotropic QTLs dominated i-traits regulation
(Additional file 1: Figure S5f), suggesting they may pinpoint the key structural genes
or transcriptional hub factors. Including all stage-specific QTLs in regression models
substantially improved variance explanation for mature traits—average variance
increased from 7.9% to 14.1%, with maximal gains for plant compactness3 (PC3;
7.1%-29.2%)—better aligning with the estimated heritability (Additional file 2: Table

S8).

Genetic architecture underlying distinct growth patterns of i-traits

We identified 130, 94 and 81 unique QTLs, associated with increasing, decreasing,
and stable type of i-traits, respectively (Additional file 2: Table S6). The frequency of
conservative QTLs was comparable between increasing and decreasing type of i-traits,
but significantly lower for stable i-traits (Fig. 3a). This pattern was correlated with
effect size differences, that conservative QTLs had larger effects on stable traits
compared to other types, while dynamic QTL showed similar effect among i-trait
types (Fig. 3a). The monotropic QTLs were enriched in stable i-traits rather than

pleiotropic QTLs (p<0.05; Fig. 3b), suggesting that pleiotropic loci may preferentially



drive growth variability. The increasing and decreasing type of i-traits basically
reflected the attributes during the plant growth, thus this result further indicated that
the large number of modest variants with dynamic allelic spectrum reformed the plant
status and accumulatively shaped the plant development.

We identified several key genes previously reported relevant to plant growth and
development. BRD1 was mapped to a conservative QTL on chromosome 1 with
persistent effects on plant height (increasing-type trait) through middle and late stages.
The PlantCompactness4 (PC4) as a decreasing i-trait detected DLF1 with the function
mediating floral inductive signals [25]. GL15 — a known gene for leaf epidermal
features (epicuticular waxes, leaf hairs) [26] — was mapped to a conservative QTL
associated with the stable trait GPAR (Fig. 3c-e). The ZmGalOx1 [19] for ear leaf
width and MADS69 (a flowering time regulator) [27] could play a role in a series of
i-traits across all three growth types, highlighting the central role of pleiotropy in

coordinating plant architecture and vegetative-to-productive transition.

Dynamic genetic regulation of maize plant architecture

Plant architecture is a critical determinant of crop productivity, with ideal plant
architecture being increasingly targeted in modern breeding programs for high-density
cultivation [28]. Leveraging our high-throughput phenotyping (HTP) platform, we
investigated two key architectural features—Ileaf sparseness and plant

height—throughout development to uncover their dynamic genetic regulation.



The architecture of lower leaf angle and upright leaf in the top is beneficial for
grain yield production via improved photosynthesis in the population level [29].
ZmGalOx1 located in the top of chromosome 4, encoded galactose oxidase that had
been proved to control maize leaf width via regulating cell proliferation efficiency
[19]. We found that ZmGalOx1 was mapped to a significant locus responsible for both
ear leaf width (ELW) and perimeter/projected area ratio (PAR) (Fig. 4a). PAR is an
i-trait reflecting the sparseness of leaves in the plant. ZmGalOx1 had kept the
influential effect on leaf sparseness from early to late development periods (Fig. 4b).
The expression profile of B73 indicated that ZmGalOx1 is constitutively expressed in
all tissues and development periods, with high expression mainly in the leaves and
internodes during early growth periods (Additional file 1: Figure S6a). Interestingly,
we found that ZmGalOx1 were associated with multiple plant architecture-related
i-traits, such as plant compactness (PC) and total projected area/bounding rectangle
area (TBR) throughout entire growth periods (Fig. 4c; Additional file 2: Table S9). It
indicated that ZmGalOx1 underlies a locus for plant ideal architecture probably via
coordinating systematic growth traits due to genetic pleiotropic regulations.

We edited ZmGalOx1 using CRISPR-CasY7, an independently developed
gene-editing system, in the inbred line Jing724, the female parent of commercial
hybrid Jingke968 and obtained homozygous line carrying frame-shift mutation
(ZmGalOx1-KO""%%) We had conducted full-growth-period phenotyping using the
identical HTP for both the ZmGalOx1-K0O”™9"?* and wild-type Jing724. It was found

that the knockout line of ZmGalOx1 exhibited significant difference compared to the



wild type across plant architecture-related i-traits that had been identified association
to the ZmGalOx1 locus in our GWAS study—including PAR, plant compactness 1-6,
TBR (Figure 4d-e; Additional file 1: Figure S7). This result genetically confirmed that
ZmGalOx1 not only influenced the ear leaf width as previously reported, but also
functioned as the key gene regulating multiple i-traits across growth cycle, finally
contributing to compact plant architecture suitable to dense planting.

Plant height is vital for dense planting breeding. GWAS detected BRD1 (a plant
height regulator) [30] significantly influencing plant height in the middle periods,
which switched to be associated with the perimeter_convex.hull (The circumferential
length of the convex hull enclosing the target object) in the late periods (Fig. 4f). To
interpret the allelic spectrum along plant growth, we found the CC allele of BRD1
(peak SNP: chrl.s_253169139) contributed to higher plant status than TT allele, while
the additive effect of BRD1 was incremental along development periods (Fig. 49). It
explained that traditional detectable effect of BRD1 was probably due to accumulative
effects initiated from early periods. Interestingly, we found that BRD1 had switched
its role from plant height to perimeter_convex.hull after floral transition (Fig. 4h),
which provide putative explanation of active BRD1 expression status in late periods
(Additional file 1: Figure S6b). This result exemplifies the mechanism of functional
relocation of BRD1 to efficiently serve the genetic regulation of plant growth in

maize.



Developmental rewiring of epistatic networks shapes maize growth

Epistatic interactions are an important yet underexplored source of complex traits in
developmental genetics [19, 31, 32]. Our comprehensive analysis of pairwise QTL
interactions (bi-QTL) uncovered 721 significant epistatic pairs (26.3% of tested
interactions, p<0.05/435, 435 is the maximum number of tested bi-QTL for single trait)
influencing i-traits across growth stages (Additional file 2: Table S10). These epistatic
interactions exhibited striking temporal specificity, with most active in only 1-2
developmental stages (Additional file 2: Table S11), demonstrating greater
stage-sensitivity than individual QTL effects. Notably, 10.2% of interacting pairs
showed pleiotropic effects on multiple i-traits (Additional file 2: Table S12). The
significant bi-QTLs could be further classified into three types (SS, SN, NN) based on
the significance of each constituent QTL in testing time (Fig. 5a). Intriguingly, the
majority of significant interactions (97.5%) involved loci that were non-significant in
single-QTL analyses (Additional file 2: Table S10), suggesting extensive cryptic
genetic variation masked by epistatic buffering. Incorporating these interactions into
predictive models explained substantial additional ~10.2% heritability (maximum
35.3%; Additional file 2: Table S13).

The temporal development revealed progressive network complexity, with
epistatic prevalence increasing from 15.4% in early stage to 40.5-49.9% in middle and
late stages (Fig. 5b; Additional file 1. Figure S8). This expansion coincided with
rising participation of large-effect loci (Additional file 2: Table S14), indicating that

genetic networks are dynamically rewired to coordinate later-stage growth.



A striking example for interactive function was found in plant height. GWAS
detected a major QTL (peak SNP: chrd.s_238092533; p=2.55x10") at the end of
chromosome 4 for early-phase plant height, which became undetectable in the late
phase (Fig. 5c¢). Allelic effect analysis confirmed the early-stage specificity, with
diminishing contributions after vegetative growth (Fig. 5d). Interestingly, alongside
with it, a novel locus for plant height on chromosome 1 was found significant in the
late phase but not early phase (Fig. 5c; Additional file 1: Figure S9a), implying
epistatic interaction involved between them putatively. We indeed found two loci
(chr4.s_238092533 and chrl.s 253261589) had interacted genetically with growing
magnitude along the plant development (Additional file 2: Table S15). In the early
phase, the interaction between them wasn’t significant yet, the locus on chromosome
4 exhibiting strong effect on plant height (p=5x10°), probably due to the inactive
status of the inhibitor (the locus on chromosome 1) (p=0.45); in the late phase,
significant interaction emerged, when the locus on chromosome 1 carried the AA
allele, the locus on chromosome 4 maintained its early-stage effect on plant height
(PH). In contrast, if TT genotype for the chromosome 1 locus, the effect of the
chromosome 4 locus on PH was reversed. Notably, it is statistical reliable to reveal the
active haplotype had inhibited the detectable significance of the chromosome 4 locus
on plant height (p=1.8x10"%), as the sample size of inhibiting haplotype of the
chromosome 1 locus was sufficiently large (n=361) (Fig. 5e; Additional file 1: Figure

S9b-d). This inhibitor-relieve model probably explains the phenomenon of the



early-specific detectable locus on plant height, and previously reported relevant to
heterosis formation in maize [20].

According to peak SNP position, gene expression and annotation, we proposed
Zm00001d053642 to be the candidate gene responsible for the plant height QTL on
chromosome 4 (Fig. 5f; Additional file 1: Figure S10-11). It encoded an EIN3-binding
protein, Arabidopsis orthologs of Zm00001d053642 (EBF1 and EBF2), influenced
Arabidopsis early growth and plant height [33-35], thus termed as ZmEBF4.
Interestingly, expression QTL analysis revealed that the ZmEBF4 expression in V9
leaf was strongly impacted by cis-regulatory variants within the plant height QTL
locus (Fig. 5f), further implying the causality of ZmEBF4 on plant height. The mutant
line (ebf4) carrying an EMS-induced premature stop codon (Additional file 1: Figure
S12) was grown in Hainan and Xiangyang in 2023 and 2024. The homozygous
mutant exhibited visibly shorter shorter height than the wild type in B73 background
(Fig. 5g), and the phenotypic difference between mutant and wild type appeared to be
larger in the early phase (V7-V8, p=1.4x10™) than late phase (R2-R3, p=0.014) (Fig.
5h) in Hainan, similar validating result was found in Xiangyang (Additional file 1:
Figure S13). In summary, we identified a novel gene specifically functional in the
early development, providing new gene resource for unraveling plant architecture and

breeding.



The trajectory modeling integrating growth variation empower the breeding
design

Traditional crop breeding has predominantly focused on maturity traits. Our findings,
however, reveal that agronomic traits are underpinned by a complex developmental
genetic architecture. Thus, we proposed the ontogenic hypothesis to explain and
utilize agriculturally important traits, that complex traits are determined by panoramic
spatial-temporal interactions between key genes and epistatic pairs. It’s a challenge to
depict the growth status along lifetime integrating the spatial-temporal dimensional
i-trait data.

Through the increasing and decreasing type of i-traits based on Gompertz model,
the growth trajectory for each inbred line was fitted by the parabolic function (median
R?=0.74, RMSE=0.0042), with three primeval function parameters (a, b, c) and two
parabolic feature parameters (— Zia called ‘axis of symmetry’, ¢ — g called
extremum) (Fig. 6a-b). The five model parameters determined the growth pattern per
line, termed as growth traits. The growth trait had significantly higher variation than
original i-traits (p=0.03) (Additional file 2: Table S16), implying the majority of plant
development information captured by the trajectory modeling. The growth traits
exhibited significantly stronger correlation with i-traits in the middle and late phases
than that in early phase (Fig. 6¢ and Additional file 1: Figure S14), probably reflecting
the key contribution of floral transition phase to the diversity of growth trajectory.

Narrow-sense heritability (h?) of growth trait was, on average, 0.026 higher than

that of original i-traits (Additional file 1: Figure S15a), of which, the axis of



symmetry and parameter b had the highest heritability (h?=0.411 and 0.407), implying
the sufficient heritable ability of the growth trajectory. GWAS of growth traits
detected 28 significant QTL loci at the stringent threshold (p<3.5x10”; Additional
file 2: Table S17), encompassing several known genes relevant to plant growth and
development (Fig 6d), but limited the jointly explained variance of 8.5-27.7%
(Additional file 1: Figure S15b). At the suggestive threshold (p<3.9x107), the growth
traits detected a total of 235 suggestive QTL (Additional file 2: Table S18), greatly
enhancing the explained variance to 62.8%-76.0% (Additional file 1: Figure S15c),
significantly higher than by chance (Additional file 1: Figure S15d).

The ontogenic hypothesis guided us to better understand the genetics of complex
traits, and further probably arise the new breeding design via spatial-temporal
perspective rather than endpoint traits. The trajectory determined by three parameters
provided the manageable potential of selection on the growth pattern in breeding use.
To explore the potential of hybrid breeding, we predicted the values of three trajectory
parameters for 207 maternal, 30 paternal lines and 6210 hybrids (Additional file 2:
Table S19). We selected two distinct sets of 30 hybrids with top and bottom
middle-parent heterosis (MPH) value based on ear weight from 6210 hybrid
combinations [20]. The high-heterotic hybrids had significantly different trajectory
parameters with the weak-heterotic hybrids (p=0.008 for a; p=0.065 for b) (Fig. 6e;
Additional file 2: Table S20). The high-heterotic hybrids exhibited visible
topologically difference between maternal and paternal trajectories, contrastingly

similar between parents for weak-heterotic hybrids (Fig. 6f). However, the genetic



relatedness between maternal and paternal lines exhibited no significant difference
between high-heterotic hybrid and weak-heterotic (0.0343 vs. 0.0197, p=0.51,
Additional file 1: Figure S16). The result further implies the possible link between
asymmetric parental trajectory and hybrid vigor, independent to traditional genotype
complement. These results illuminated the potential of trajectory complement as new

route for line improvement and hybrid breeding in maize.

Discussion

In this study, we achieved RGB image acquisition, trait extraction, and analysis of
maize plants through high-throughput and automated experiments. However, the
observed bidirectional clustering pattern indicates that, despite the large amount of
data generated, the i-traits derived from time-series RGB images can ultimately
capture only a limited set of information related to pixel intensity and size, resulting in
a constrained feature correlation structure. There is still room for optimization in the
technology. Although the equipment is initially automated, manual handling and
management are still required. Additionally, the phenotypic algorithm uses traditional
threshold segmentation, which has high limitations with regard to background
environments. With the development of agricultural intelligence, the automation and
intelligence of high-throughput phenotyping equipment have become the trend. To
support the high-precise fundamental genetic research, the high-throughput
phenotyping platform needs to keep increasing the efficiency and accuracy of data

collection. The integrate automatic guided robot transport vehicles is better alternative



to boost the image screening throughput and further cut the labor costs. The
art-of-state deep learning and image recognition approaches will benefit the accuracy
on image segmentation and growth related i-trait extraction. Furthermore, for field
crops such as maize, rice and wheat, the high-throughput field-scale phenotyping
system was believed to be urgent technology for genetic study and breeding. The
more field experiments combined with breeding practices and the application of
modern phenomic detection techniques, such as Unmanned Aerial Vehicle and field
sensors, aided by multi-modal Al analytic method, will have great potential for
generating robust field-scale big data for future model improvement.

In recent years, with the rapid development of deep learning technology, more
deep learning algorithms have played an important role in phenomics research. The
continuous iteration and update of deep learning networks have provided sustained
technical support for image segmentation and prediction, significantly improving
accuracy and robustness. Therefore, in future research, datasets could be created for
training deep learning networks such as SegFormer [36], U-Net [37], and Faster
R-CNN [38]. These methods could process maize images not only to accurately
segment the entire maize plant but also to precisely identify key organs such as the
maize tassel and ear, facilitating comprehensive trait extraction and analysis.

Compared to natural populations, well-designed populations can significantly
reduce the impact of population structure on GWAS and improve the detection power
of causal variants [39]. Early artificial populations, such as nested association

mapping (NAM) [40], random-open-parent association mapping (ROAM) [6], and the



multi-parent advanced generation intercross (MAGIC) populations [41, 42], have
greatly enhanced the efficiency of causal variant detection and gene discovery in
maize. More recently developed populations, including the CUBIC population [19] in
maize and the 18K-rice population [32] in rice, have further minimized the influence
of population structure while integrating diverse genetic variations, substantially
advancing functional genomics research. In this study, we extended the utilization of
maize CUBIC population to the genetic study of growth related phenomics, which
comprehensively dissect the dynamic nature of plant growth variation with prevalent
dynamic, pleiotropic QTLs and bi-QTL epistatic interactions.

The key question to answer in the plant breeding is the genetic architecture of the
agricultural important trait. The hypotheses for complex traits formation directly
determine interpreting trait variation and application in crop improvement.

Traditionally, the crop genetics and breeding follows the polygenic hypothesis,
that realized the quantitative traits are governed by few major genes and numerous
trivial genes [5]. It implied that trait improvement requires to consider the
whole-genome variants rather than the few key loci, which guide the breeding
paradigm reforming from marker-assisted selection (MAS) to genomic selection (GS).
The functional genomics nowadays greatly help realizing the genetic effects of
currently proved gene loci via multi-omics and molecular biology approaches [3, 43].
But it remains to be elusive on the global view why the set of genes across genomes

appeared to be functionally distinct in allelic effect volume.



The omnigenic hypothesis provides a systematic explanation for polygenic
model by extending single trait to multiple traits along spatial dimension [7]. The
major gene had the substantial effect as it function directly on the target trait, while
the genes with trivial effects perhaps indirectly influenced target trait by regulating the
related traits. Thus, the functional major and trivial genes are interpreted to be
spatially core and peripheral genes, respectively, based on the fact of their physical
approximation to target trait. The hypothesis of omnigenic model reminds the vitality
of systematic traits to the breeding, implying the reliability of transforming GS
roadmap to the multiple-trait synergistic selection (MTSS) paradigm. The
target-oriented prioritization (TOP) algorithm was an art-of-state MTSS approach for
simultaneously selecting multiple traits in maize [21].

In the present study, we further extended the omnigenic hypothesis toward the
temporal dimension, named as ontogenic hypothesis, which proposed that the
complex traits were determined by panoramic spatial-temporal interactions between
key genes and epistatic pairs (Additional file 1: Figure S17). We found the temporal
related loci and genes were vital to systematically interpret the formation of complex
traits at the endpoint and provided the alternative to partially address the long-term
debate of “missing heritability”. Considerable QTLs and bi-QTL interaction served to
be pleiotropy on the multiple i-traits, especially, engaging in cross-period pleiotropy,
illuminating the mechanism of genetic relocations on plant growth regulation
mediated by panoramic spatial-temporal interactions. Our findings provide new

intriguing knowledge for the genetic architecture of the quantitative traits in maize.



The ontogenic hypothesis guided us to better understand the genetics of complex
traits from spatial-temporal dimensions, and further probably arise the new breeding
design via spatial-temporal perspective rather than endpoint traits. In traditional
breeding practice, actually, breeders had indeed selected candidate lines for next cycle
with similar logic, that not just by endpoint grain yield, but also multiple field traits
expressed across different development periods. The high-throughput phenotyping
technique allows us to efficiently collect image data comprehensively along the
lifetime, but it’s hard to make selection based on high dimensional features. Thus, we
mathematically modeled the plant growth features into the trajectory determined by
three parameters, this limited number of features provided the manageable potential of
selection on the growth pattern in breeding use. Driven by ontogenic hypothesis, we
empirically propose a novel route for hybrid breeding via asymmetric parental

trajectory design in maize.

Conclusions

In  this study, wusing a high-throughput phenotyping platform, a
high-temporal-resolution RGB images investigation of 679 maize inbred lines were
conducted throughout vegetative and reproductive phases. From these images, we
extracted 67 image-based traits (i-traits) exhibiting diverse developmental patterns.
By integrating genome-wide association studies, the dynamic genetic architecture was
systematically dissected, and genetic effect relocation with growth was discovered.

We further validated ZmGalOx1 as a core time-conservative plant architecture



regulator. The dramatic dynamics of epistatic interactions underscore the vital role of
time-dependent genetic regulation, enclosing a key gene ZmEBF4 for early-specific
plant height. Moreover, mathematical modeling quantified developmental diversity of
inbred lines, enabling a predictive breeding strategy driven by ontogenic hypothesis in

crop improvement.

Methods

Materials and experiment design

In the present study, a subset of 679 maize diverse inbred lines were selected
randomly from the complete-diallel plus Unbalanced Breeding-derived Inter-Cross
(CUBIC) population that prevalently used in genetic study of quantitative traits [19].
All inbred lines were grown in cultivated pots with 4 replicates and one plant per pot,
following the complete-random experiment design. To avoid micro-environment
influence among cultivated pots, two check lines- CHANG7-2 and DAN340 were
randomly set among the CUBIC lines with 11 and 8 pot replications. The population

pot cultivation followed the normal management.

Image analysis and i-trait extraction

All inbred lines were screened for the growth attributes using the high-throughput
phenotyping (HTP) platform from seedling stage (\V3) to mature stage (R3) per 3 days,
totally collected phenotypic data across 18 periods. The timing of image acquisition

and specific environmental information for each period are provided in Additional file



2: Table S21. The data collection was carried out from May 1, 2019, to June 27, 2019,
lasting a total of 58 days. The first collection period took two days to complete with
two phenotyping chambers simultaneously, while the remaining periods were
completed within a single day with four phenotyping chambers simultaneously with
each darkroom operating at a speed of 120 pots per hour. Each day, image acquisition
started at 8:00 a.m. and ended at 5:00 p.m., lasting 9 hours. For each maize pot, 20
images were captured to ensure that the image showing the maximum projected area
of the maize plant could be obtained for subsequent analysis. This scheme enabled the
completion of all maize image acquisition within a single day, ensuring comparable
growth trends across plants and guaranteeing  high-quality images. The
whole-development phenotyping collected totally 1,002,240 RGB images (~10
terabytes). The algorithm was developed based on LabVIEW (National Instruments,
Inc., USA), C++, and OpenCV, and was designed for maize image segmentation and
phenotypic trait extraction. The specific process included: (1) performing region
segmentation on the original images to remove interfering objects such as edge
tracks;(2) obtaining binary images of the whole maize plant through threshold
segmentation, and calculating biomass- and structure-related traits such as plant area,
height, and width;(3) calling the OpenCV dynamic link library to obtain the convex
hull image and calculating a series of features related to the convex hull;(4) applying
the binary image as a mask to the original image to generate RGB images containing
only the target region, as well as grayscale images corresponding to the | (Intensity),

H (Hue), S (Saturation), and G (Green) components, from which histogram texture



and color-related parameters are calculated. After performing image segmentation
using the algorithm, some images may exhibit poor segmentation results due to noise
during the image acquisition process. We manually checked all segmentation results
and re-segmented the images with poor segmentation performance to ensure the
quality met the expected results. To assess the segmentation performance, we
randomly selected 24 images from different growth stages for evaluation. By
comparing manual segmentation with algorithm-based segmentation, the Intersection
over Union (loU) was calculated to be 0.893 (Additional file 2: Table S22). The
Receiver Operating Characteristic (ROC) curve evaluates the performance of the
maize whole-plant segmentation model, Area Under the Curve (AUC) is 0.991,
indicating excellent performance in distinguishing plant pixels (positive samples)

from background/noise (negative samples) (Additional file 1: Figure S18).

Quality control for all i-trait

For each i-trait, four replicated values were collected per line. The outlier (beyond the
mean value + 1.80) of 4 replicated value was removed, and the mean of remaining
values was treated to be i-trait phenotype. With the exception of variance component
and broad-sense heritability analyses, the mean values were utilized for all subsequent

analyses.



Principal component analysis
Principal component analysis was performed using the dudi.pca function from the

ade4 (Version = 1.7.19) package in R language.

Definition of i-trait type

For each i-trait, the phenotypic data was normalized across inbred lines per
development period. The regression slope was calculated per line based on
normalized i-traits, describing the growth trend across periods. The i-trait was defined
as increasing type, if more 50% of 679 lines had the slope > 0.3; it was decreasing
type if the 50% slope were < —0.3; or as stable type.

Variance component analysis

All replicate values for each line were utilized to calculate variance component of
lifespan i-traits. The formula: Y =u+ G+ T+ G X T + e. Y is the i-trait value for
a genotype in a development period, u represents the grand mean, G stands for the
genotype effect of the 679 lines, T denotes the temporal effect of developmental
stages, G X T is the effect from interaction between G and T, e is the residual
error. The model was run as fully random effects using the ‘lmer’ function from

package ‘lme4’ (Version = 1.1.30) in R language.

Broad-sense heritability analysis

The formula for calculating broad-sense heritability of traits: H?* = 62/ [6% + o2 /7].

o% and o2 are the genotypic variance and residual variance, r is the number of



replications. The ‘lme4’ package in R language was used to evaluate the variance

component.

Genome-wide association study

The whole-genome 2,822,486 SNP variants with MAF>0.05 on the 679 maize
CUBIC lines were derived from the previous study [19]. We performed genome-wide
association studies (GWAS) using the univariate linear mixed model (LMM)
implemented in the GEMMA software (version 0.98.1) [44] for 67 i-traits across 18
development  periods. The model formula: y=Wa+xB+u+e |,
u ~ MVN,(0,At7'K), € ~ MVN,(0,7"11,), W is an m X ¢ matrix of covariates
(fixed effects) including a column of 1s. where o is a c-vector of fixed-effect
coefficients, including the intercept; x denotes an n-vector of marker genotypes;
represents the effect size of the marker; u is an n-vector of random effects; € is an
n-vector of residuals; t-! is the variance of the residual errors; A is the ratio of the two
variance components; K is a known n x n genetic relatedness matrix; and I, is an
n X n identity matrix. MVN, denotes the n-dimensional multivariate normal
distribution. The random effect u was used to control the influence of population
structure. The centered relatedness matrix K was computed within GEMMA using the
following formula: G. = ,l,Zﬁ’:l(xi —1,%)(x; — 1,%)7, we denoted X as the
n X p matrix of genotypes, x; as its ith column representing genotypes of ith SNP,
X; as the sample mean, and 1,, as a n X 1 vector of 1’s. The GWAS threshold for

SNP significance was 3.5x107, following the Bonferroni correction method (p=1/n,



where n is 2,822,486). Significant SNPs within a physical distance of <20 kb were
initially clustered into the same locus. Subsequently, loci exhibiting significant
linkage disequilibrium (r?>0.2) were further merged. The resulting loci after this
two-step consolidation were designated as quantitative trait loci (QTLs), with each
QTL required to contain at least two significant SNPs [19] while QTLs with
significant linkage disequilibrium but separated by a distance greater than 10 Mb were
prohibited merged. For each i-trait, the detected original QTLs from different periods
were merged into consensus QTL, if they were physical colocalization or
approximation with physical distance less than 1 Mb and linkage disequilibrium
(r*>0.2). The most significant SNP across periods was defined to be the leading SNP
for the consensus QTL. Across i-traits, the consensus QTLs with physical
colocalization and sharing at least one significant SNP were further integrated into
unique QTL region. The leading SNP and derived consensus QTL were selected to
evaluate the genetic attributes for unique QTL. If a unique QTL was mapped by
i-traits in only one development stage, it was defined as a dynamic QTL, or as a
conservative QTL. If a unique QTL was mapped by at least two or more i-traits, it was
defined as a pleiotropic QTL, or as a monotropic QTL. The QTL hotspot along the
genome was evaluated using a 1-Mb sliding window, the intervals with top 5% QTLS
counts per window was defined as the QTL hotspots. Linkage Disequilibrium (LD)
between SNPs was calculated using the snpgdsLDMat function from SNPRelate

(Version = 1.24.0) package.



Expression analysis

The leaves RNA-seq data of ZmEBF4 in V9 from CUBIC panel was collected at the
Hainan field station in the winter of 2016 [19]. The FPKM (Fragments Per Kilobase
of transcript per Million mapped reads) of ZmEBF4 was used as the phenotype to
perform expression QTL analysis using GEMMA software [44]. The multi-tissue and
multi-period expression profile data of maize B73 were obtained from the MaizeGDB

website (https://maizegdb.org).

The bi-QTL Interaction analysis

For each i-trait, all QTLs that were significant at any time point in single GWAS were
filtered to perform the genetic interaction analysis between the leading SNPs of these
QTLs (referred to as bi-QTLs) for all development periods. A two-way ANOVA was
used to test the bi-SNP interaction using the ‘anova’ function in R language, as
following formula: Y = G; + G, + G, X G, + e. Y is the phenotypic value for each
genotype in all time point, G, is the main genetic effect of the first SNP, G, the
main genetic effect of another SNP, G4 X G, is the interaction effect between two
SNPs, e is the residual error. To control the false positive rate, we applied a multiple
testing correction to the significance threshold. Specifically, we first scanned the
number of bi-QTL pairs tested for each trait and selected the maximum value (435) to
perform a uniform Bonferroni correction. The adjusted significance threshold was set
at @« = 0.05/435. Bi-QTLs with a p-value exceeding this threshold were defined as
statistically significant epistatic interactions. Due to the time-specific nature of the

QTLs—where a locus may be significant only at certain developmental stages—we



categorized bi-QTL interactions into three types based on the individual significance
of each constituent QTL at the time of testing: interactions between two significant
QTLs (SS), interactions between one significant and one non-significant QTL (SN),

interactions between two non-significant QTLs (NN).

Gene function verification of ZmEBF4

The EMS mutant ebf4 (Mutant ID: EMS4-1a0572) with a G to A mutation at 346 aa,
resulting in an early stop codon, was obtained from a maize EMS mutant library
(https://elabcaas.cn/memd/public/index.html#/) [45], which was sequenced to confirm
the mutation. The KASP (kompetitive allele specific PCR) Primers was designed for
genotyping of segregated offsprings. Purified progeny was obtained from
backcrossing homozygous mutant with wild type twice in Hainan and Xiangyang
province, China. The field phenotype of mutant, WT and mutant/WT was identified in
Xiangyang, Jilin. and Hainan, which occurred in July 2023, August 2024 and

December 2024 respectively.

Gene function verification of ZmGalOx1

Using the Jing724 inbred line as the target material, we employed CRISPR-CasY7, a
gene-editing system independently developed by WIMI Biotechnology Co., Ltd. to
generate a precise editing event in ZmGalOx1, resulting in a frameshift mutant
designated as ZmGalOx1-KO’™9"%*_ A total of 20 pots each of the ZmGalOx1-KO"97%

and wild-type Jing724 were cultivated in an outdoor greenhouse under management



practices consistent with those used in the 2019 experiment. From May 19 to July 28,
2025, image-based phenotyping was performed at seven-day intervals using the same

image acquisition and analysis protocols as those applied in 2019.

Growth trajectory and parameter analysis

In order to find the i-trait possessing growth pattern, a typical growth model
Gompertz [46] (y = Amaxe"’e_”) was used, which was a modified S-curve. Here, y
is the phenotypic value of i-trait in time point ¢t (t*® day after sowing), the model
has three parameters: A,,q.. (the phenotypic value in the moment when growth stop);
b (determining the position of the curve along the time axis); r (the growth rate in
fastest growing moment). For each i-trait from 18 time point, the growth curves of all
genotypes were fitted, and R? was used to evaluate the fitting effect of each growth
curve. Then based on the mean value of fitting R? from all inbred line, the i-trait was
filtered to be a trait possessing growth pattern if R? was bigger than 0.9. For further
extraction of growth features, a principal component analysis (PCA) was used to
acquire the key features from all i-trait reflecting growth. The first two principal
components PC1 and PC2 were selected to fit final growth trajectory of all genotypes.
Based on the distribution of all inbred lines (Fig. 6a), the quadratic function model
(y = ax* + bx + ¢) was used to fit the growth trajectory. Here, y is the value of
PC2, x is the value of PC1, the model has three parameters: a (determining the
direction and size of opening), b (determining the tangent slope at the intersection of

the model and the y-axis), ¢ (determining the intersection of the model and the



y-axis). And the model has two feature parameters: —% (determining the position of
the axis of symmetry), ¢ — Z—z (determining the location of extreme value). The
optimal parameter values were estimated using function from stats (\Version = 4.0.0)
package in R with Nelder-Mead method [47]. Colocalized QTL identification between

growth parameters and i-trait was consistent with the unique QTL identification.

Growth trajectory complement analysis of hybrids
The genomic prediction of the hybrids’ trajectory parameters was performed using the
mixed.solve function from rrBLUP (Version = 4.6.1) package. The genetic relatedness

of parental lines from each hybrids was computed within GEMMA using the

following formula: Gc=%2?:1%(xi—1nfi)(xi—1,,;?,-)T, we denoted X as the
n X p matrix of genotypes, x; as its ith column representing genotypes of ith SNP,

X; as the sample mean and v,, as the sample variance of ith SNP, and 1, as a

n X 1 vector of 1’s.

Hypothesis testing and multiple comparisons

The test method of significance is Wilcoxon-Mann-Whitney with two-tailed approach
from geom_signif function of R package ggsignif (Version = 0.6.3). The method of
multiple comparisons is Least Significant Difference from LSD.test function of R

package agricolae (Version = 1.3.5).
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Fig. 1. Diverse and dynamic variation of i-traits across maize inbred lines during
whole-growth periods. a, The workflow of the image-based traits collected by the
high-throughput phenotyping platform. Two inbred lines with slow and fast growth,
MG_892 and MG_512, were exhibited based on the RGB images of the plant along
the 18-time points. b, The PCA analysis of 679 inbred lines based on the genomic
variants, agronomic traits and i-traits, respectively. The 20 parents and 659 progeny
lines were indicated with different colors. ¢, The comparison of coefficient of
variation between agronomic traits and i-traits. d, The three typical growth modes for
inbred lines via continuous i-trait data. The heatmap plot indicated the normalized

i-trait value from 679 inbred lines in 18 time points.
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Fig. 2. The genetic dynamics of maize i-trait variations cross development
periods. a, Genome-wide QTL summary for all i-traits across 18 growth periods. At
each period, the size and color of bubble indicates the count of QTLs in a sliding
window of 1Mb across the genome. b, The overview of four types of QTLs reflecting
the i-trait dynamics. All QTLs detected in 55 i-traits across 18 periods were merged
into 263 unique QTLs. For one i-trait, a QTL was defined to be the dynamic QTL if
only detected in one growth period, or as conservative QTL. On the other hand, one
QTL can be defined as the pleiotropic QTL if detected in multiple i-traits either within
or cross periods, or as the monotropic QTL. Colored cells represent significantly

association, with colors indicating different developmental stages: blue for Early, red



for Mid, and yellow for Late. c-e, Regional Manhattan plots for three key QTLs
responsible for the genetic dynamics. In alphabetical order, the panel indicated the
dynamic, conservative and cross-period pleiotropic QTL, the colored dots indicated
the values above the GWAS threshold, the shaded area denoted the QTL interval. f,
The difference of i-trait variances explained by four types of QTLs. The
Wilcoxon-Mann-Whitney with two-tailed method was used to evaluate the
significance of differences between dynamic and conservative QTLs, as well as

between pleiotropic and monotropic QTLS.
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Fig. 3. The distinctive genetics of three i-trait growth types in maize. a, The
preference of QTL dynamics by three growth types of i-traits. b, The preference of
QTL pleiotropy by three growth types of i-traits. c-e, Integrated GWAS results of all
I-traits from three growth types. The dashed horizontal line indicated the GWAS
threshold (p=3.5x107), the most significant SNP of each i-trait was indicated as the

colored dot, while the colors represented the four QTL types (blue — dynamic and



monotropic, green — dynamic and pleiotropic, yellow — conservative and monotropic,

red — conservative and pleiotropic).
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Fig. 4. Rediscovering novel function of ZmGalOx1 and BRD1 via i-traits across

periods. a, GWAS colocalization of ear leaf width and PAR in late phase. b, The

haplotypic effects of ZmGalOx1 on PAR trait across 18 time points. ¢, The functional

network of ZmGalOx1 on multiple i-traits across periods. The node colors indicated

different i-traits, the node size indicated the different periods. d, Comparison of PAR

i-trait among ZmGalOx1-KO"""?* and Jing724 across 11 time points from May 19 to

July 28, 2025 at Wuhan from China, ‘*’ denotes p<=0.05, ‘**’ denotes p<=0.01, “***’

denotes p<=0.001,

ckaEkx’ denotes p<=0.0001. The test method of significance is

Student's t-test with two-tailed approach. e, Comparison of RGB images among

ZmGalOx1-K0’9"2* and Jing724 across 11 time points from May 19 to July 28, 2025



at Wuhan from China. f, GWAS colocalization of plant height in the middle phase and
PTCH in late phase. g, The haplotypic effects of BRD1 on plant height across 18 time
points. h, Functional relocation of BRD1 on multiple traits across periods. PH denotes
plant height, ELW denotes ear leaf width, PAR denotes the perimeter/projected area

ratio, PTCH denotes the perimeter_convex.hull.
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Fig. 5. Cross-period remodeling interactions explained the early-specific effect of
ZmEBF4 on plant height in maize. a, Interaction types between QTLs (bi-QTLS)
detected across the whole periods, bi-QTLs exceeding the significance threshold
(p<=1.15e-4) were defined as Sig_lInteract, which were categorized into three types
based on the individual significance of each constituent QTL: SS (both QTLs
significant), SN (only one QTL significant) and NN (neither QTL significant). b, The

variation of genome-wide interactions between early and late stages. The colored line



indicated the interaction type, and the line width indicated the significance of the
interaction. ¢, GWAS colocalization of PH in early and late phase. d, The haplotypic
effects of chr4.s_238092533 on plant height across 18 time points. e, The haplotype
effects of chr4.s_238092533 and chrl.s 253261589 on plant height, along with their
epistatic interaction effects in early and late stages, the genotypes of line B73 is GG
(chrd.s_238092533) and TT (chrl.s_253261589). f, GWAS colocalization of PH and
expression level of ZmEBF4, colored dot represents the SNP above the threshold. g,
Field-grown picture of WT and mutant line of ZmEBF4 in Hainan, scale bar
corresponds to 20cm. h, Comparison of PH among mutant line of ZmEBF4 and WT

on V7-V8 and R2-R3 at Hainan from China. PH denotes plant height.
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Fig. 6. The trajectory modeling integrating growth variation empower the
breeding design. a, Schematic diagram of growth trajectory modeling and parameter
quantification. b, Model fitting performance of growth trajectories across all inbred
lines. ¢, The identification of the i-trait and period most correlated with growth
parameters. The size and color density of the dots indicated the absolute value of the
correlation coefficient. The dot with red border indicated the highest correlated period.
d, GWAS results of five trajectory parameters. The significant SNPs were indicated

with colored dots that grouped by different parameters. The red dashed horizontal line



indicated the GWAS threshold (p<3.5x10°), suggestive threshold (p<3.9x107°) was
denoted as blue dashed horizontal line. AOS denotes axis of symmetry. e, The
comparison of predicted trajectory parameters between the hybrids with high and low
heterosis. f, The potential of hybrid design via trajectory complements between

female and male parents.



