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Abstract 

Background: Phenotypic diversity arises from the process of development and is 

shaped by genomic variation in plants. However, the genetic basis of growth 

dynamics remains poorly understood in maize. 

Results: Here, we analyze 679 maize inbred lines derived from a synthetic CUBIC 

population with approximately 2.8 million SNPs, leveraging high-throughput 
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phenotyping to capture 1,002,240 RGB images across 18 growth stages. We quantify 

67 image-based traits (i-traits), revealing distinct dynamic patterns throughout 

development. Genome-wide association studies identify 857 quantitative trait loci 

(QTLs) influencing growth variation, with 88.6% classified as period-specific 

dynamic QTLs exhibiting modest effects, and 11.4% as conservative QTLs with 

sustained effects. Notably, 1.5% of cryptic pleiotropic QTLs spanning different 

growth stages suggest genetic relocations during development. These QTLs enhance 

heritability estimates for mature traits by an average of 6.2%. We further characterize 

the novel function of key genes linked with these QTLs, including BRD1 with the 

pleiotropic effects on plant height and perimeter of convex hull and ZmGalOx1 with 

the broad-spectrum regulation of plant architecture. Developmental rewiring of 

epistatic networks shapes maize growth, underscoring the vitality of temporal genetic 

regulation. Trajectory modeling of i-traits across periods decodes the growth variation 

patterns, supporting the ontogenic hypothesis driven predictive breeding strategies. 

Conclusion: The findings elucidate the genetic architecture underlying growth 

dynamics from a spatial-temporal perspective, offering novel insights for maize 

improvement. 

Key words: Maize, Image-based traits, Growth dynamics, Temporal genetic 

regulation, Trajectory modeling, Breeding design 
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Background 

Maize (Zea mays) is a globally vital crop, serving as a critical source of food, feed, 

and industrial raw materials. With rising global demand for maize, continuous 

improvement of agriculturally important traits is essential to meet the needs of a 

growing population [1, 2]. Deciphering the genetic basis of these agronomic traits and 

cloning their underlying genes remains an important measure to address these needs 

[3]. Over the past decades, the maize research community had made significant 

contributions in functional genomics, identifying hundreds of genes and natural 

variants responsible for agronomic traits [4]. Most agronomic traits are quantitatively 

inherited, conforming to the polygenic hypothesis, wherein phenotypic variation 

arises from the cumulative effects of numerous minor loci and their interactions [5]. 

For instance, the maize grain yield is estimated to be influenced by thousands of 

minor-effect genes [6], suggesting that a substantial proportion of heritability remains 

unexplained. The omnigenic hypothesis, originally proposed in human genetics, offers 

a framework for interpreting complex traits. According to this hypothesis, trait 

variation is governed by two interconnected gene networks: (1) core genes with direct 

biological relevance to the trait, and (2) peripheral genes that influence the trait 

indirectly through interactions with core genes or by modulating related biological 

processes [7]. This paradigm may also prove valuable for dissecting complex 

agronomic traits in plants. Traditionally, studies had predominantly focused on the 

endpoint traits measured at harvest, surely indirectly shaped by underlying growth 
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attributes. However, the genetic architecture and functional importance of these 

dynamic growth-related traits remain poorly understood.  

Advances in high-throughput phenotyping (HTP) platform have enabled 

large-scale and dynamic characterization of plant growth attributes, providing 

unprecedented opportunities to decode the genetic basis of agronomic traits [8]. 

Time-resolved genetic studies in Arabidopsis, barley, Brassica napus, cotton, and 

wheat have revealed that many quantitative trait loci (QTLs) exhibit the temporal 

specificity with shifted effects across developmental stages [9-15]. In maize, recent 

efforts have leveraged the UAV-based phenotyping and mathematical modeling to 

identify genomic regions associated with vegetative growth and flowering [16, 17]. A 

landmark study of 368 diverse inbred lines subjected to drought stress uncovered 

1,529 QTLs linked to image-based traits, leading to functional validation of 

ZmcPGM2 and ZmFAB1A as regulators of drought-tolerance in maize [18]. Overall, 

the above-mentioned studies have paid relatively more attention to the discovery of 

genes using the populations with less relevance to crop improvement. 

 In the present study, we employed the maize CUBIC (Complete-diallel plus 

Unbalanced Breeding-derived Inter-Cross) population that had been used as a 

powerful resource for genetic studies, heterosis exploration, and genomic breeding 

[19-21], to investigate growth dynamics across vegetative and reproductive phases. 

Using HTP platform, we identified 67 image-based traits (i-traits) over 18 continuous 

growth periods. Our study revealed diverse growth patterns among inbred lines and 

identified a comprehensive set of QTLs with distinct functional roles, which deepen 
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insights into the dynamic genetic architecture of quantitative traits and recover a 

substantial fraction of "missing heritability" overlooked by traditional trait–genome 

association approaches. The prevalent epistatic interactions play a pivotal role in 

shaping developmental status and identify ZmEBF4 as a causal gene governing 

early-stage plant height. Based on the understanding of dynamic genetic nature for 

growth traits, we propose the ontogenic hypothesis by extending omnigenic 

hypothesis toward the temporal dimension, indicating the complex traits were 

determined by panoramic spatial-temporal interactions between key genes and 

epistatic pairs. Driven by ontogenic hypothesis and mathematical modeling, we 

provided a novel hybrid breeding strategy via asymmetric growth trajectory design in 

parents for future crop improvement.  

 

Results 

Diverse and dynamic i-traits capture the maize growth variation 

To systematically characterize the maize growth diversity, we cultivated 679 

randomly selected lines from the CUBIC population in an outdoor greenhouse 

(Additional file 1: Figure S1a). Using a plant-to-sensor HTP platform, we captured >1 

million images across 18 growth stages from seedling stage (V4, 38 days after sowing) 

to mature stage (R4, 95 days after sowing), obtaining 67 i-traits through an integrated 

computational pipeline (Fig. 1a; see Methods) [18, 22-24]. This approach enabled 
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dynamic quantification of growth variation across different developmental stages, 

rather than relying solely on endpoint measurements at harvest. 

The i-traits encompassed four categories – biomass, color, morphology and 

texture – providing comprehensive coverage of RGB-based plant features throughout 

development (Additional file 2: Table S1). Clustering analysis of 679 inbred lines 

revealed that agronomic trait profiles were distinct from patterns of genomic variation 

but similar with that of i-traits (Fig. 1b; Additional file 1: Figure S2), suggesting that 

i-traits may bridge genomic architecture and endpoint phenotypic causality following 

the central dogma in genetics. 

Coefficient of variation (CV) analysis classified 67 i-traits into two groups based 

on bimodal distribution (Fig. 1c; Additional file 1: Figure S1b). The Group-I (lower 

variance than agronomic traits; p=9.6×10
-3

) was enriched for texture related features, 

whereas the Group-II (higher variance than agronomic traits; p=1.3 × 10
-4

) 

predominantly comprised morphological traits (Additional file 2: Table S2). For 

developmental staging, we partitioned the 18 time points into three stages, as early 

(V4-V10), middle (V10-R1), and late (R1-R4) (Additional file 1: Figure S1c; 

Additional file 2: Table S3).  

Hierarchical clustering of normalized i-traits across periods revealed three distinct 

dynamic patterns: increasing, decreasing, and stable. (Fig. 1d). Traits of the increasing 

type (e.g., plant height and biomass) represented a cumulative growth pattern. In 

contrast, decreasing-type traits (e.g., perimeter/projected area ratio, PAR) primarily 

reflected morphological changes (Additional file 2: Table S4). These increasing traits 
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also showed significantly higher heritability, especially in late developmental 

stages—a pattern that may indicate distinct genetic regulation underlying different 

i-trait types (Additional file 2: Table S5). Principal component and correlation 

analyses further disclosed the phenotypic specificity among the three i-trait growth 

types (Additional file 1: Figure S1d-e), laying a foundation to dissect how dynamic 

features mediate genotype-to-phenotype relationships in maize. 

 

Temporal dynamics of genetic architecture underlying i-traits 

Variance component analysis revealed that developmental time accounted for the 

majority of global i-trait variations (55.4%), while exerted their strongest influence 

during late growth phases (Additional file 1: Figure S3). This suggests that early 

subtle genetic differences become magnified through subsequent growth, ultimately 

shaping the mature phenotypic diversity. Over 90% of i-traits showed substantial 

heritability (broad-sense heritability>0.5), with heritability significantly increasing in 

late developmental periods (Additional file 1: Figure S4; Additional file 2: Table S5), 

consistent with previous observations in maize [22]. 

Using 2,822,486 high-quality SNPs (MAF≥0.05), we performed genome-wide 

association study (GWAS) for all 67 i-traits across 18 time periods, identifying 857 

QTLs (p≤3.5×10
-7

) (Fig. 2a). On average, two QTLs (range: 1 to 22) were identified 

for each i-trait, while 47 QTLs (range: 25-125) for each development stage were 

found (Additional file 2: Table S6). The number of detected QTLs peaked during 

middle developmental stage (125 QTLs at stage 7), significantly exceeding early- and 
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late-stage counts (p=8.4×10
-4

 and p=6.6×10
-3

, respectively; Additional file 1: Figure 

S5a). Notably, the late-stage QTLs exhibited larger effect sizes than the early or 

middle-stage ones (Additional file 1: Figure S5b), including 10 major QTLs with 

phenotypic variance explained (PVE) over 10%. The QTL confident intervals spanned 

0.05-44.03 Mb, 82.3% of which overlapped with genic regions (Additional file 1: 

Figure S5c). The identified QTLs across multiple stages were clustered into 24 

genomic hotspots showing strong developmental specificity and enrichment for 

transcription factors (p<0.05; Additional file 1: Figure S5d-e). 

For each i-trait, the original QTLs across development periods were merged into 

consensus QTL based on the colocalization analysis (r
2
>0.2). Totally, 450 consensus 

intervals were obtained and further integrated into 263 unique genomic regions 

putatively regulating growth-related i-traits (see Methods, Additional file 2: Table S6). 

These QTLs exhibited two temporal patterns: (1) Dynamic QTLs (88.6%): 

Stage-specific associations (e.g., a chromosome 7 locus associated with Heywood 

circularity exclusively in late periods; Fig. 2c). (2) Conservative QTLs: Persistent 

effects across stages (e.g., a chromosome 4 region mapped by plant compactness 

throughout development; Fig. 2d). 

Functionally, most QTLs were monotropic (associated with single i-trait), but 

24.7% showed approximate pleiotropy—including four "cross-period pleiotropic" loci 

with stage-shifting effects (Fig. 2b; Additional file 2: Table S7). For example, a 

chromosome 1 QTL were associated with early-stage plant height but switched to be 

significantly associated with Heywood circularity after floral transition (Fig. 2e), 
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illustrating how developmental context reshapes the genetic contributions to the plant 

growth. 

Conservative QTLs, though fewer in number, explained significantly more 

phenotypic variance than dynamic QTLs (p<6.9× 10
-6

), while pleiotropic loci 

outperformed monotropic QTLs in explained variance per locus (p<4×10
-3

) (Fig. 2f). 

Combinations of conservative and pleiotropic QTLs dominated i-traits regulation 

(Additional file 1: Figure S5f), suggesting they may pinpoint the key structural genes 

or transcriptional hub factors. Including all stage-specific QTLs in regression models 

substantially improved variance explanation for mature traits—average variance 

increased from 7.9% to 14.1%, with maximal gains for plant compactness3 (PC3; 

7.1%-29.2%)—better aligning with the estimated heritability (Additional file 2: Table 

S8). 

 

Genetic architecture underlying distinct growth patterns of i-traits 

We identified 130, 94 and 81 unique QTLs, associated with increasing, decreasing, 

and stable type of i-traits, respectively (Additional file 2: Table S6). The frequency of 

conservative QTLs was comparable between increasing and decreasing type of i-traits, 

but significantly lower for stable i-traits (Fig. 3a). This pattern was correlated with 

effect size differences, that conservative QTLs had larger effects on stable traits 

compared to other types, while dynamic QTL showed similar effect among i-trait 

types (Fig. 3a). The monotropic QTLs were enriched in stable i-traits rather than 

pleiotropic QTLs (p<0.05; Fig. 3b), suggesting that pleiotropic loci may preferentially 
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drive growth variability. The increasing and decreasing type of i-traits basically 

reflected the attributes during the plant growth, thus this result further indicated that 

the large number of modest variants with dynamic allelic spectrum reformed the plant 

status and accumulatively shaped the plant development. 

We identified several key genes previously reported relevant to plant growth and 

development. BRD1 was mapped to a conservative QTL on chromosome 1 with 

persistent effects on plant height (increasing-type trait) through middle and late stages. 

The PlantCompactness4 (PC4) as a decreasing i-trait detected DLF1 with the function 

mediating floral inductive signals [25]. GL15 – a known gene for leaf epidermal 

features (epicuticular waxes, leaf hairs) [26] – was mapped to a conservative QTL 

associated with the stable trait GPAR (Fig. 3c-e). The ZmGalOx1 [19] for ear leaf 

width and MADS69 (a flowering time regulator) [27] could play a role in a series of 

i-traits across all three growth types, highlighting the central role of pleiotropy in 

coordinating plant architecture and vegetative-to-productive transition. 

 

Dynamic genetic regulation of maize plant architecture 

Plant architecture is a critical determinant of crop productivity, with ideal plant 

architecture being increasingly targeted in modern breeding programs for high-density 

cultivation [28]. Leveraging our high-throughput phenotyping (HTP) platform, we 

investigated two key architectural features—leaf sparseness and plant 

height—throughout development to uncover their dynamic genetic regulation.  
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The architecture of lower leaf angle and upright leaf in the top is beneficial for 

grain yield production via improved photosynthesis in the population level [29]. 

ZmGalOx1 located in the top of chromosome 4, encoded galactose oxidase that had 

been proved to control maize leaf width via regulating cell proliferation efficiency 

[19]. We found that ZmGalOx1 was mapped to a significant locus responsible for both 

ear leaf width (ELW) and perimeter/projected area ratio (PAR) (Fig. 4a). PAR is an 

i-trait reflecting the sparseness of leaves in the plant. ZmGalOx1 had kept the 

influential effect on leaf sparseness from early to late development periods (Fig. 4b). 

The expression profile of B73 indicated that ZmGalOx1 is constitutively expressed in 

all tissues and development periods, with high expression mainly in the leaves and 

internodes during early growth periods (Additional file 1: Figure S6a). Interestingly, 

we found that ZmGalOx1 were associated with multiple plant architecture-related 

i-traits, such as plant compactness (PC) and total projected area/bounding rectangle 

area (TBR) throughout entire growth periods (Fig. 4c; Additional file 2: Table S9). It 

indicated that ZmGalOx1 underlies a locus for plant ideal architecture probably via 

coordinating systematic growth traits due to genetic pleiotropic regulations. 

We edited ZmGalOx1 using CRISPR–CasY7, an independently developed 

gene-editing system, in the inbred line Jing724, the female parent of commercial 

hybrid JingKe968 and obtained homozygous line carrying frame-shift mutation 

(ZmGalOx1-KO
Jing724

). We had conducted full-growth-period phenotyping using the 

identical HTP for both the ZmGalOx1-KO
Jing724

 and wild-type Jing724. It was found 

that the knockout line of ZmGalOx1 exhibited significant difference compared to the 
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wild type across plant architecture-related i-traits that had been identified association 

to the ZmGalOx1 locus in our GWAS study—including PAR, plant compactness 1–6, 

TBR (Figure 4d-e; Additional file 1: Figure S7). This result genetically confirmed that 

ZmGalOx1 not only influenced the ear leaf width as previously reported, but also 

functioned as the key gene regulating multiple i-traits across growth cycle, finally 

contributing to compact plant architecture suitable to dense planting. 

Plant height is vital for dense planting breeding. GWAS detected BRD1 (a plant 

height regulator) [30] significantly influencing plant height in the middle periods, 

which switched to be associated with the perimeter_convex.hull (The circumferential 

length of the convex hull enclosing the target object) in the late periods (Fig. 4f). To 

interpret the allelic spectrum along plant growth, we found the CC allele of BRD1 

(peak SNP: chr1.s_253169139) contributed to higher plant status than TT allele, while 

the additive effect of BRD1 was incremental along development periods (Fig. 4g). It 

explained that traditional detectable effect of BRD1 was probably due to accumulative 

effects initiated from early periods. Interestingly, we found that BRD1 had switched 

its role from plant height to perimeter_convex.hull after floral transition (Fig. 4h), 

which provide putative explanation of active BRD1 expression status in late periods 

(Additional file 1: Figure S6b). This result exemplifies the mechanism of functional 

relocation of BRD1 to efficiently serve the genetic regulation of plant growth in 

maize. 
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Developmental rewiring of epistatic networks shapes maize growth 

Epistatic interactions are an important yet underexplored source of complex traits in 

developmental genetics [19, 31, 32]. Our comprehensive analysis of pairwise QTL 

interactions (bi-QTL) uncovered 721 significant epistatic pairs (26.3% of tested 

interactions, p<0.05/435, 435 is the maximum number of tested bi-QTL for single trait) 

influencing i-traits across growth stages (Additional file 2: Table S10). These epistatic 

interactions exhibited striking temporal specificity, with most active in only 1-2 

developmental stages (Additional file 2: Table S11), demonstrating greater 

stage-sensitivity than individual QTL effects. Notably, 10.2% of interacting pairs 

showed pleiotropic effects on multiple i-traits (Additional file 2: Table S12). The 

significant bi-QTLs could be further classified into three types (SS, SN, NN) based on 

the significance of each constituent QTL in testing time (Fig. 5a). Intriguingly, the 

majority of significant interactions (97.5%) involved loci that were non-significant in 

single-QTL analyses (Additional file 2: Table S10), suggesting extensive cryptic 

genetic variation masked by epistatic buffering. Incorporating these interactions into 

predictive models explained substantial additional ~10.2% heritability (maximum 

35.3%; Additional file 2: Table S13). 

The temporal development revealed progressive network complexity, with 

epistatic prevalence increasing from 15.4% in early stage to 40.5-49.9% in middle and 

late stages (Fig. 5b; Additional file 1: Figure S8). This expansion coincided with 

rising participation of large-effect loci (Additional file 2: Table S14), indicating that 

genetic networks are dynamically rewired to coordinate later-stage growth. 
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A striking example for interactive function was found in plant height. GWAS 

detected a major QTL (peak SNP: chr4.s_238092533; p=2.55×10
-9

) at the end of 

chromosome 4 for early-phase plant height, which became undetectable in the late 

phase (Fig. 5c). Allelic effect analysis confirmed the early-stage specificity, with 

diminishing contributions after vegetative growth (Fig. 5d). Interestingly, alongside 

with it, a novel locus for plant height on chromosome 1 was found significant in the 

late phase but not early phase (Fig. 5c; Additional file 1: Figure S9a), implying 

epistatic interaction involved between them putatively. We indeed found two loci 

(chr4.s_238092533 and chr1.s_253261589) had interacted genetically with growing 

magnitude along the plant development (Additional file 2: Table S15). In the early 

phase, the interaction between them wasn’t significant yet, the locus on chromosome 

4 exhibiting strong effect on plant height (p=5×10
-6

), probably due to the inactive 

status of the inhibitor (the locus on chromosome 1) (p=0.45); in the late phase, 

significant interaction emerged, when the locus on chromosome 1 carried the AA 

allele, the locus on chromosome 4 maintained its early-stage effect on plant height 

(PH). In contrast, if TT genotype for the chromosome 1 locus, the effect of the 

chromosome 4 locus on PH was reversed. Notably, it is statistical reliable to reveal the 

active haplotype had inhibited the detectable significance of the chromosome 4 locus 

on plant height (p=1.8×10
-13

), as the sample size of inhibiting haplotype of the 

chromosome 1 locus was sufficiently large (n=361) (Fig. 5e; Additional file 1: Figure 

S9b-d). This inhibitor-relieve model probably explains the phenomenon of the 
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early-specific detectable locus on plant height, and previously reported relevant to 

heterosis formation in maize [20]. 

According to peak SNP position, gene expression and annotation, we proposed 

Zm00001d053642 to be the candidate gene responsible for the plant height QTL on 

chromosome 4 (Fig. 5f; Additional file 1: Figure S10-11). It encoded an EIN3-binding 

protein, Arabidopsis orthologs of Zm00001d053642 (EBF1 and EBF2), influenced 

Arabidopsis early growth and plant height [33-35], thus termed as ZmEBF4. 

Interestingly, expression QTL analysis revealed that the ZmEBF4 expression in V9 

leaf was strongly impacted by cis-regulatory variants within the plant height QTL 

locus (Fig. 5f), further implying the causality of ZmEBF4 on plant height. The mutant 

line (ebf4) carrying an EMS-induced premature stop codon (Additional file 1: Figure 

S12) was grown in Hainan and Xiangyang in 2023 and 2024. The homozygous 

mutant exhibited visibly shorter shorter height than the wild type in B73 background 

(Fig. 5g), and the phenotypic difference between mutant and wild type appeared to be 

larger in the early phase (V7-V8, p=1.4×10
-4

) than late phase (R2-R3, p=0.014) (Fig. 

5h) in Hainan, similar validating result was found in Xiangyang (Additional file 1: 

Figure S13). In summary, we identified a novel gene specifically functional in the 

early development, providing new gene resource for unraveling plant architecture and 

breeding. 
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The trajectory modeling integrating growth variation empower the breeding 

design 

Traditional crop breeding has predominantly focused on maturity traits. Our findings, 

however, reveal that agronomic traits are underpinned by a complex developmental 

genetic architecture. Thus, we proposed the ontogenic hypothesis to explain and 

utilize agriculturally important traits, that complex traits are determined by panoramic 

spatial-temporal interactions between key genes and epistatic pairs. It’s a challenge to 

depict the growth status along lifetime integrating the spatial-temporal dimensional 

i-trait data.  

Through the increasing and decreasing type of i-traits based on Gompertz model, 

the growth trajectory for each inbred line was fitted by the parabolic function (median 

R2=0.74, RMSE=0.0042), with three primeval function parameters (a, b, c) and two 

parabolic feature parameters ( −
𝒃

𝟐𝒂
 called ‘axis of symmetry’, 𝒄 −

𝒃𝟐

𝟒𝒂
 called 

extremum) (Fig. 6a-b). The five model parameters determined the growth pattern per 

line, termed as growth traits. The growth trait had significantly higher variation than 

original i-traits (p=0.03) (Additional file 2: Table S16), implying the majority of plant 

development information captured by the trajectory modeling. The growth traits 

exhibited significantly stronger correlation with i-traits in the middle and late phases 

than that in early phase (Fig. 6c and Additional file 1: Figure S14), probably reflecting 

the key contribution of floral transition phase to the diversity of growth trajectory. 

Narrow-sense heritability (h²) of growth trait was, on average, 0.026 higher than 

that of original i-traits (Additional file 1: Figure S15a), of which, the axis of 
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symmetry and parameter b had the highest heritability (h
2
=0.411 and 0.407), implying 

the sufficient heritable ability of the growth trajectory. GWAS of growth traits 

detected 28 significant QTL loci at the stringent threshold (p≤3.5×10
-7

; Additional 

file 2: Table S17), encompassing several known genes relevant to plant growth and 

development (Fig 6d), but limited the jointly explained variance of 8.5-27.7% 

(Additional file 1: Figure S15b). At the suggestive threshold (p≤3.9×10
-5

), the growth 

traits detected a total of 235 suggestive QTL (Additional file 2: Table S18), greatly 

enhancing the explained variance to 62.8%-76.0% (Additional file 1: Figure S15c), 

significantly higher than by chance (Additional file 1: Figure S15d).  

The ontogenic hypothesis guided us to better understand the genetics of complex 

traits, and further probably arise the new breeding design via spatial-temporal 

perspective rather than endpoint traits. The trajectory determined by three parameters 

provided the manageable potential of selection on the growth pattern in breeding use. 

To explore the potential of hybrid breeding, we predicted the values of three trajectory 

parameters for 207 maternal, 30 paternal lines and 6210 hybrids (Additional file 2: 

Table S19). We selected two distinct sets of 30 hybrids with top and bottom 

middle-parent heterosis (MPH) value based on ear weight from 6210 hybrid 

combinations [20]. The high-heterotic hybrids had significantly different trajectory 

parameters with the weak-heterotic hybrids (p=0.008 for a; p=0.065 for b) (Fig. 6e; 

Additional file 2: Table S20). The high-heterotic hybrids exhibited visible 

topologically difference between maternal and paternal trajectories, contrastingly 

similar between parents for weak-heterotic hybrids (Fig. 6f). However, the genetic 
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relatedness between maternal and paternal lines exhibited no significant difference 

between high-heterotic hybrid and weak-heterotic (0.0343 vs. 0.0197, p=0.51, 

Additional file 1: Figure S16). The result further implies the possible link between 

asymmetric parental trajectory and hybrid vigor, independent to traditional genotype 

complement. These results illuminated the potential of trajectory complement as new 

route for line improvement and hybrid breeding in maize. 

 

Discussion 

In this study, we achieved RGB image acquisition, trait extraction, and analysis of 

maize plants through high-throughput and automated experiments. However, the 

observed bidirectional clustering pattern indicates that, despite the large amount of 

data generated, the i-traits derived from time-series RGB images can ultimately 

capture only a limited set of information related to pixel intensity and size, resulting in 

a constrained feature correlation structure. There is still room for optimization in the 

technology. Although the equipment is initially automated, manual handling and 

management are still required. Additionally, the phenotypic algorithm uses traditional 

threshold segmentation, which has high limitations with regard to background 

environments. With the development of agricultural intelligence, the automation and 

intelligence of high-throughput phenotyping equipment have become the trend. To 

support the high-precise fundamental genetic research, the high-throughput 

phenotyping platform needs to keep increasing the efficiency and accuracy of data 

collection. The integrate automatic guided robot transport vehicles is better alternative 
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to boost the image screening throughput and further cut the labor costs. The 

art-of-state deep learning and image recognition approaches will benefit the accuracy 

on image segmentation and growth related i-trait extraction. Furthermore, for field 

crops such as maize, rice and wheat, the high-throughput field-scale phenotyping 

system was believed to be urgent technology for genetic study and breeding. The 

more field experiments combined with breeding practices and the application of 

modern phenomic detection techniques, such as Unmanned Aerial Vehicle and field 

sensors, aided by multi-modal AI analytic method, will have great potential for 

generating robust field-scale big data for future model improvement. 

In recent years, with the rapid development of deep learning technology, more 

deep learning algorithms have played an important role in phenomics research. The 

continuous iteration and update of deep learning networks have provided sustained 

technical support for image segmentation and prediction, significantly improving 

accuracy and robustness. Therefore, in future research, datasets could be created for 

training deep learning networks such as SegFormer [36], U-Net [37], and Faster 

R-CNN [38]. These methods could process maize images not only to accurately 

segment the entire maize plant but also to precisely identify key organs such as the 

maize tassel and ear, facilitating comprehensive trait extraction and analysis.  

Compared to natural populations, well-designed populations can significantly 

reduce the impact of population structure on GWAS and improve the detection power 

of causal variants [39]. Early artificial populations, such as nested association 

mapping (NAM) [40], random-open-parent association mapping (ROAM) [6], and the 
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multi-parent advanced generation intercross (MAGIC) populations [41, 42], have 

greatly enhanced the efficiency of causal variant detection and gene discovery in 

maize. More recently developed populations, including the CUBIC population [19] in 

maize and the 18K-rice population [32] in rice, have further minimized the influence 

of population structure while integrating diverse genetic variations, substantially 

advancing functional genomics research. In this study, we extended the utilization of 

maize CUBIC population to the genetic study of growth related phenomics, which 

comprehensively dissect the dynamic nature of plant growth variation with prevalent 

dynamic, pleiotropic QTLs and bi-QTL epistatic interactions. 

The key question to answer in the plant breeding is the genetic architecture of the 

agricultural important trait. The hypotheses for complex traits formation directly 

determine interpreting trait variation and application in crop improvement.  

Traditionally, the crop genetics and breeding follows the polygenic hypothesis, 

that realized the quantitative traits are governed by few major genes and numerous 

trivial genes [5]. It implied that trait improvement requires to consider the 

whole-genome variants rather than the few key loci, which guide the breeding 

paradigm reforming from marker-assisted selection (MAS) to genomic selection (GS). 

The functional genomics nowadays greatly help realizing the genetic effects of 

currently proved gene loci via multi-omics and molecular biology approaches [3, 43]. 

But it remains to be elusive on the global view why the set of genes across genomes 

appeared to be functionally distinct in allelic effect volume.  
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The omnigenic hypothesis provides a systematic explanation for polygenic 

model by extending single trait to multiple traits along spatial dimension [7]. The 

major gene had the substantial effect as it function directly on the target trait, while 

the genes with trivial effects perhaps indirectly influenced target trait by regulating the 

related traits. Thus, the functional major and trivial genes are interpreted to be 

spatially core and peripheral genes, respectively, based on the fact of their physical 

approximation to target trait. The hypothesis of omnigenic model reminds the vitality 

of systematic traits to the breeding, implying the reliability of transforming GS 

roadmap to the multiple-trait synergistic selection (MTSS) paradigm. The 

target-oriented prioritization (TOP) algorithm was an art-of-state MTSS approach for 

simultaneously selecting multiple traits in maize [21].  

In the present study, we further extended the omnigenic hypothesis toward the 

temporal dimension, named as ontogenic hypothesis, which proposed that the 

complex traits were determined by panoramic spatial-temporal interactions between 

key genes and epistatic pairs (Additional file 1: Figure S17). We found the temporal 

related loci and genes were vital to systematically interpret the formation of complex 

traits at the endpoint and provided the alternative to partially address the long-term 

debate of “missing heritability”. Considerable QTLs and bi-QTL interaction served to 

be pleiotropy on the multiple i-traits, especially, engaging in cross-period pleiotropy, 

illuminating the mechanism of genetic relocations on plant growth regulation 

mediated by panoramic spatial-temporal interactions. Our findings provide new 

intriguing knowledge for the genetic architecture of the quantitative traits in maize. 
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The ontogenic hypothesis guided us to better understand the genetics of complex 

traits from spatial-temporal dimensions, and further probably arise the new breeding 

design via spatial-temporal perspective rather than endpoint traits. In traditional 

breeding practice, actually, breeders had indeed selected candidate lines for next cycle 

with similar logic, that not just by endpoint grain yield, but also multiple field traits 

expressed across different development periods. The high-throughput phenotyping 

technique allows us to efficiently collect image data comprehensively along the 

lifetime, but it’s hard to make selection based on high dimensional features. Thus, we 

mathematically modeled the plant growth features into the trajectory determined by 

three parameters, this limited number of features provided the manageable potential of 

selection on the growth pattern in breeding use. Driven by ontogenic hypothesis, we 

empirically propose a novel route for hybrid breeding via asymmetric parental 

trajectory design in maize. 

 

Conclusions 

In this study, using a high-throughput phenotyping platform, a 

high-temporal-resolution RGB images investigation of 679 maize inbred lines were 

conducted throughout vegetative and reproductive phases. From these images, we 

extracted 67 image-based traits (i-traits) exhibiting diverse developmental patterns. 

By integrating genome-wide association studies, the dynamic genetic architecture was 

systematically dissected, and genetic effect relocation with growth was discovered. 

We further validated ZmGalOx1 as a core time-conservative plant architecture 
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regulator. The dramatic dynamics of epistatic interactions underscore the vital role of 

time-dependent genetic regulation, enclosing a key gene ZmEBF4 for early-specific 

plant height. Moreover, mathematical modeling quantified developmental diversity of 

inbred lines, enabling a predictive breeding strategy driven by ontogenic hypothesis in 

crop improvement. 

 

Methods 

Materials and experiment design 

In the present study, a subset of 679 maize diverse inbred lines were selected 

randomly from the complete-diallel plus Unbalanced Breeding-derived Inter-Cross 

(CUBIC) population that prevalently used in genetic study of quantitative traits [19]. 

All inbred lines were grown in cultivated pots with 4 replicates and one plant per pot, 

following the complete-random experiment design. To avoid micro-environment 

influence among cultivated pots, two check lines- CHANG7-2 and DAN340 were 

randomly set among the CUBIC lines with 11 and 8 pot replications. The population 

pot cultivation followed the normal management. 

 

Image analysis and i-trait extraction 

All inbred lines were screened for the growth attributes using the high-throughput 

phenotyping (HTP) platform from seedling stage (V3) to mature stage (R3) per 3 days, 

totally collected phenotypic data across 18 periods. The timing of image acquisition 

and specific environmental information for each period are provided in Additional file 
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2: Table S21. The data collection was carried out from May 1, 2019, to June 27, 2019, 

lasting a total of 58 days. The first collection period took two days to complete with 

two phenotyping chambers simultaneously, while the remaining periods were 

completed within a single day with four phenotyping chambers simultaneously with 

each darkroom operating at a speed of 120 pots per hour. Each day, image acquisition 

started at 8:00 a.m. and ended at 5:00 p.m., lasting 9 hours. For each maize pot, 20 

images were captured to ensure that the image showing the maximum projected area 

of the maize plant could be obtained for subsequent analysis. This scheme enabled the 

completion of all maize image acquisition within a single day, ensuring comparable 

growth trends across plants and guaranteeing high-quality images. The 

whole-development phenotyping collected totally 1,002,240 RGB images (~10 

terabytes). The algorithm was developed based on LabVIEW (National Instruments, 

Inc., USA), C++, and OpenCV, and was designed for maize image segmentation and 

phenotypic trait extraction. The specific process included: (1) performing region 

segmentation on the original images to remove interfering objects such as edge 

tracks;(2) obtaining binary images of the whole maize plant through threshold 

segmentation, and calculating biomass- and structure-related traits such as plant area, 

height, and width;(3) calling the OpenCV dynamic link library to obtain the convex 

hull image and calculating a series of features related to the convex hull;(4) applying 

the binary image as a mask to the original image to generate RGB images containing 

only the target region, as well as grayscale images corresponding to the I (Intensity), 

H (Hue), S (Saturation), and G (Green) components, from which histogram texture 
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and color-related parameters are calculated. After performing image segmentation 

using the algorithm, some images may exhibit poor segmentation results due to noise 

during the image acquisition process. We manually checked all segmentation results 

and re-segmented the images with poor segmentation performance to ensure the 

quality met the expected results. To assess the segmentation performance, we 

randomly selected 24 images from different growth stages for evaluation. By 

comparing manual segmentation with algorithm-based segmentation, the Intersection 

over Union (IoU) was calculated to be 0.893 (Additional file 2: Table S22). The 

Receiver Operating Characteristic (ROC) curve evaluates the performance of the 

maize whole-plant segmentation model, Area Under the Curve (AUC) is 0.991, 

indicating excellent performance in distinguishing plant pixels (positive samples) 

from background/noise (negative samples) (Additional file 1: Figure S18). 

 

Quality control for all i-trait 

For each i-trait, four replicated values were collected per line. The outlier (beyond the 

mean value ± 𝟏. 𝟖𝝈) of 4 replicated value was removed, and the mean of remaining 

values was treated to be i-trait phenotype. With the exception of variance component 

and broad-sense heritability analyses, the mean values were utilized for all subsequent 

analyses. 
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Principal component analysis 

Principal component analysis was performed using the dudi.pca function from the 

ade4 (Version = 1.7.19) package in R language. 

 

Definition of i-trait type 

For each i-trait, the phenotypic data was normalized across inbred lines per 

development period. The regression slope was calculated per line based on 

normalized i-traits, describing the growth trend across periods. The i-trait was defined 

as increasing type, if more 50% of 679 lines had the slope ≥ 𝟎. 𝟑; it was decreasing 

type if the 50% slope were ≤ −𝟎. 𝟑; or as stable type. 

Variance component analysis 

All replicate values for each line were utilized to calculate variance component of 

lifespan i-traits. The formula: 𝒀 = 𝒖 + 𝑮 + 𝑻 + 𝑮 × 𝑻 + 𝒆. 𝒀 is the i-trait value for 

a genotype in a development period, 𝒖 represents the grand mean, 𝑮 stands for the 

genotype effect of the 679 lines, 𝑻 denotes the temporal effect of developmental 

stages, 𝑮 × 𝑻 is the effect from interaction between 𝑮 and 𝑻, 𝒆 is the residual 

error. The model was run as fully random effects using the ‘lmer’ function from 

package ‘lme4’ (Version = 1.1.30) in R language. 

 

Broad-sense heritability analysis 

The formula for calculating broad-sense heritability of traits: 𝑯𝟐 = 𝝈𝑮
𝟐 / [𝝈𝑮

𝟐 + 𝝈𝒆
𝟐/𝒓]. 

𝝈𝑮
𝟐  and 𝝈𝒆

𝟐 are the genotypic variance and residual variance, r is the number of 
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replications. The ‘lme4’ package in R language was used to evaluate the variance 

component. 

 

Genome-wide association study 

The whole-genome 2,822,486 SNP variants with MAF≥0.05 on the 679 maize 

CUBIC lines were derived from the previous study [19]. We performed genome-wide 

association studies (GWAS) using the univariate linear mixed model (LMM) 

implemented in the GEMMA software (version 0.98.1) [44] for 67 i-traits across 18 

development periods. The model formula: 𝒚 = 𝑾𝜶 + 𝒙𝜷 + 𝒖 + 𝝐 , 

𝒖 ∼ 𝑴𝑽𝑵𝒏(𝟎, 𝝀𝝉−𝟏𝑲), 𝝐 ∼ 𝑴𝑽𝑵𝒏(𝟎, 𝝉−𝟏𝚰𝒏), W is an 𝒏 × 𝒄 matrix of covariates 

(fixed effects) including a column of 1s. where α is a c-vector of fixed-effect 

coefficients, including the intercept; x denotes an n-vector of marker genotypes; β 

represents the effect size of the marker; u is an n-vector of random effects; ε is an 

n-vector of residuals; τ⁻¹ is the variance of the residual errors; λ is the ratio of the two 

variance components; K is a known 𝒏 × 𝒏 genetic relatedness matrix; and In is an 

𝒏 × 𝒏  identity matrix. MVNn denotes the n-dimensional multivariate normal 

distribution. The random effect u was used to control the influence of population 

structure. The centered relatedness matrix K was computed within GEMMA using the 

following formula: 𝑮𝒄 =
𝟏

𝒑
∑ (𝒙𝒊 − 𝟏𝒏𝒙̅𝒊)(𝒙𝒊 − 𝟏𝒏𝒙̅𝒊)

𝑻𝒑
𝒊=𝟏 , we denoted 𝑿  as the 

𝒏 × 𝒑 matrix of genotypes, 𝒙𝒊 as its 𝒊th column representing genotypes of ith SNP, 

𝒙̅𝒊 as the sample mean, and 𝟏𝒏 as a 𝒏 × 𝟏 vector of 1’s. The GWAS threshold for 

SNP significance was 3.5×10
-7

, following the Bonferroni correction method (p=1/n, 
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where n is 2,822,486). Significant SNPs within a physical distance of <20 kb were 

initially clustered into the same locus. Subsequently, loci exhibiting significant 

linkage disequilibrium (r
2≥0.2) were further merged. The resulting loci after this 

two-step consolidation were designated as quantitative trait loci (QTLs), with each 

QTL required to contain at least two significant SNPs [19] while QTLs with 

significant linkage disequilibrium but separated by a distance greater than 10 Mb were 

prohibited merged. For each i-trait, the detected original QTLs from different periods 

were merged into consensus QTL, if they were physical colocalization or 

approximation with physical distance less than 1 Mb and linkage disequilibrium 

(r
2≥0.2). The most significant SNP across periods was defined to be the leading SNP 

for the consensus QTL. Across i-traits, the consensus QTLs with physical 

colocalization and sharing at least one significant SNP were further integrated into 

unique QTL region. The leading SNP and derived consensus QTL were selected to 

evaluate the genetic attributes for unique QTL. If a unique QTL was mapped by 

i-traits in only one development stage, it was defined as a dynamic QTL, or as a 

conservative QTL. If a unique QTL was mapped by at least two or more i-traits, it was 

defined as a pleiotropic QTL, or as a monotropic QTL. The QTL hotspot along the 

genome was evaluated using a 1-Mb sliding window, the intervals with top 5% QTLs 

counts per window was defined as the QTL hotspots. Linkage Disequilibrium (LD) 

between SNPs was calculated using the snpgdsLDMat function from SNPRelate 

(Version = 1.24.0) package. 
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Expression analysis 

The leaves RNA-seq data of ZmEBF4 in V9 from CUBIC panel was collected at the 

Hainan field station in the winter of 2016 [19]. The FPKM (Fragments Per Kilobase 

of transcript per Million mapped reads) of ZmEBF4 was used as the phenotype to 

perform expression QTL analysis using GEMMA software [44]. The multi-tissue and 

multi-period expression profile data of maize B73 were obtained from the MaizeGDB 

website (https://maizegdb.org). 

 

The bi-QTL Interaction analysis 

For each i-trait, all QTLs that were significant at any time point in single GWAS were 

filtered to perform the genetic interaction analysis between the leading SNPs of these 

QTLs (referred to as bi-QTLs) for all development periods. A two-way ANOVA was 

used to test the bi-SNP interaction using the ‘anova’ function in R language, as 

following formula: 𝒀 = 𝑮𝟏 + 𝑮𝟐 + 𝑮𝟏 × 𝑮𝟐 + 𝒆. 𝒀 is the phenotypic value for each 

genotype in all time point, 𝑮𝟏 is the main genetic effect of the first SNP, 𝑮𝟐 the 

main genetic effect of another SNP, 𝑮𝟏 × 𝑮𝟐 is the interaction effect between two 

SNPs, 𝒆 is the residual error. To control the false positive rate, we applied a multiple 

testing correction to the significance threshold. Specifically, we first scanned the 

number of bi-QTL pairs tested for each trait and selected the maximum value (435) to 

perform a uniform Bonferroni correction. The adjusted significance threshold was set 

at 𝜶 = 𝟎. 𝟎𝟓/𝟒𝟑𝟓. Bi-QTLs with a p-value exceeding this threshold were defined as 

statistically significant epistatic interactions. Due to the time-specific nature of the 

QTLs—where a locus may be significant only at certain developmental stages—we 
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categorized bi-QTL interactions into three types based on the individual significance 

of each constituent QTL at the time of testing: interactions between two significant 

QTLs (SS), interactions between one significant and one non-significant QTL (SN), 

interactions between two non-significant QTLs (NN). 

 

Gene function verification of ZmEBF4 

The EMS mutant ebf4 (Mutant ID: EMS4-1a0572) with a G to A mutation at 346 aa, 

resulting in an early stop codon, was obtained from a maize EMS mutant library 

(https://elabcaas.cn/memd/public/index.html#/) [45], which was sequenced to confirm 

the mutation. The KASP (kompetitive allele specific PCR) Primers was designed for 

genotyping of segregated offsprings. Purified progeny was obtained from 

backcrossing homozygous mutant with wild type twice in Hainan and Xiangyang 

province, China. The field phenotype of mutant, WT and mutant/WT was identified in 

Xiangyang, Jilin and Hainan, which occurred in July 2023, August 2024 and 

December 2024 respectively. 

 

Gene function verification of ZmGalOx1 

Using the Jing724 inbred line as the target material, we employed CRISPR–CasY7, a 

gene-editing system independently developed by WIMI Biotechnology Co., Ltd. to 

generate a precise editing event in ZmGalOx1, resulting in a frameshift mutant 

designated as ZmGalOx1-KO
Jing724

. A total of 20 pots each of the ZmGalOx1-KO
Jing724

 

and wild-type Jing724 were cultivated in an outdoor greenhouse under management 
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practices consistent with those used in the 2019 experiment. From May 19 to July 28, 

2025, image-based phenotyping was performed at seven-day intervals using the same 

image acquisition and analysis protocols as those applied in 2019. 

 

Growth trajectory and parameter analysis 

In order to find the i-trait possessing growth pattern, a typical growth model 

Gompertz [46] (𝒚 = 𝑨𝒎𝒂𝒙𝒆−𝒃𝒆−𝒓𝒕
) was used, which was a modified S-curve. Here, 𝒚 

is the phenotypic value of i-trait in time point 𝒕 (𝒕𝒕𝒉 day after sowing), the model 

has three parameters: 𝑨𝒎𝒂𝒙 (the phenotypic value in the moment when growth stop); 

𝒃 (determining the position of the curve along the time axis); 𝒓 (the growth rate in 

fastest growing moment). For each i-trait from 18 time point, the growth curves of all 

genotypes were fitted, and 𝑹𝟐 was used to evaluate the fitting effect of each growth 

curve. Then based on the mean value of fitting 𝑹𝟐 from all inbred line, the i-trait was 

filtered to be a trait possessing growth pattern if 𝑹𝟐 was bigger than 0.9. For further 

extraction of growth features, a principal component analysis (PCA) was used to 

acquire the key features from all i-trait reflecting growth. The first two principal 

components PC1 and PC2 were selected to fit final growth trajectory of all genotypes. 

Based on the distribution of all inbred lines (Fig. 6a), the quadratic function model 

(𝒚 = 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄) was used to fit the growth trajectory. Here, 𝒚 is the value of 

PC2, 𝒙 is the value of PC1, the model has three parameters: 𝒂 (determining the 

direction and size of opening), 𝒃 (determining the tangent slope at the intersection of 

the model and the y-axis), 𝒄 (determining the intersection of the model and the 
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y-axis). And the model has two feature parameters: −
𝒃

𝟐𝒂
 (determining the position of 

the axis of symmetry), 𝒄 −
𝒃𝟐

𝟒𝒂
 (determining the location of extreme value). The 

optimal parameter values were estimated using function from stats (Version = 4.0.0) 

package in R with Nelder-Mead method [47]. Colocalized QTL identification between 

growth parameters and i-trait was consistent with the unique QTL identification. 

 

Growth trajectory complement analysis of hybrids 

The genomic prediction of the hybrids’ trajectory parameters was performed using the 

mixed.solve function from rrBLUP (Version = 4.6.1) package. The genetic relatedness 

of parental lines from each hybrids was computed within GEMMA using the 

following formula: 𝑮𝒄 =
𝟏

𝒑
∑

𝟏

𝒗𝒙𝒊

(𝒙𝒊 − 𝟏𝒏𝒙̅𝒊)(𝒙𝒊 − 𝟏𝒏𝒙̅𝒊)
𝑻𝒑

𝒊=𝟏 , we denoted 𝑿 as the 

𝒏 × 𝒑 matrix of genotypes, 𝒙𝒊 as its 𝒊th column representing genotypes of ith SNP, 

𝒙̅𝒊 as the sample mean and 𝒗𝒙𝒊
 as the sample variance of 𝒊th SNP, and 𝟏𝒏 as a 

𝒏 × 𝟏 vector of 1’s. 

 

Hypothesis testing and multiple comparisons 

The test method of significance is Wilcoxon-Mann-Whitney with two-tailed approach 

from geom_signif function of R package ggsignif (Version = 0.6.3). The method of 

multiple comparisons is Least Significant Difference from LSD.test function of R 

package agricolae (Version = 1.3.5). 
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Fig. 1. Diverse and dynamic variation of i-traits across maize inbred lines during 

whole-growth periods. a, The workflow of the image-based traits collected by the 

high-throughput phenotyping platform. Two inbred lines with slow and fast growth, 

MG_892 and MG_512, were exhibited based on the RGB images of the plant along 

the 18-time points. b, The PCA analysis of 679 inbred lines based on the genomic 

variants, agronomic traits and i-traits, respectively. The 20 parents and 659 progeny 

lines were indicated with different colors. c, The comparison of coefficient of 

variation between agronomic traits and i-traits. d, The three typical growth modes for 

inbred lines via continuous i-trait data. The heatmap plot indicated the normalized 

i-trait value from 679 inbred lines in 18 time points. 
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Fig. 2. The genetic dynamics of maize i-trait variations cross development 

periods. a, Genome-wide QTL summary for all i-traits across 18 growth periods. At 

each period, the size and color of bubble indicates the count of QTLs in a sliding 

window of 1Mb across the genome. b, The overview of four types of QTLs reflecting 

the i-trait dynamics. All QTLs detected in 55 i-traits across 18 periods were merged 

into 263 unique QTLs. For one i-trait, a QTL was defined to be the dynamic QTL if 

only detected in one growth period, or as conservative QTL. On the other hand, one 

QTL can be defined as the pleiotropic QTL if detected in multiple i-traits either within 

or cross periods, or as the monotropic QTL. Colored cells represent significantly 

association, with colors indicating different developmental stages: blue for Early, red 
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for Mid, and yellow for Late. c-e, Regional Manhattan plots for three key QTLs 

responsible for the genetic dynamics. In alphabetical order, the panel indicated the 

dynamic, conservative and cross-period pleiotropic QTL, the colored dots indicated 

the values above the GWAS threshold, the shaded area denoted the QTL interval. f, 

The difference of i-trait variances explained by four types of QTLs. The 

Wilcoxon-Mann-Whitney with two-tailed method was used to evaluate the 

significance of differences between dynamic and conservative QTLs, as well as 

between pleiotropic and monotropic QTLs. 

 

 

Fig. 3. The distinctive genetics of three i-trait growth types in maize. a, The 

preference of QTL dynamics by three growth types of i-traits. b, The preference of 

QTL pleiotropy by three growth types of i-traits. c-e, Integrated GWAS results of all 

i-traits from three growth types. The dashed horizontal line indicated the GWAS 

threshold (p=3.5×10
-7

), the most significant SNP of each i-trait was indicated as the 

colored dot, while the colors represented the four QTL types (blue – dynamic and 
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monotropic, green – dynamic and pleiotropic, yellow – conservative and monotropic, 

red – conservative and pleiotropic). 

 

 

Fig. 4. Rediscovering novel function of ZmGalOx1 and BRD1 via i-traits across 

periods. a, GWAS colocalization of ear leaf width and PAR in late phase. b, The 

haplotypic effects of ZmGalOx1 on PAR trait across 18 time points. c, The functional 

network of ZmGalOx1 on multiple i-traits across periods. The node colors indicated 

different i-traits, the node size indicated the different periods. d, Comparison of PAR 

i-trait among ZmGalOx1-KO
Jing724

 and Jing724 across 11 time points from May 19 to 

July 28, 2025 at Wuhan from China, ‘*’ denotes p<=0.05, ‘**’ denotes p<=0.01, ‘***’ 

denotes p<=0.001, ‘****’ denotes p<=0.0001. The test method of significance is 

Student's t-test with two-tailed approach. e, Comparison of RGB images among 

ZmGalOx1-KO
Jing724

 and Jing724 across 11 time points from May 19 to July 28, 2025 
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at Wuhan from China. f, GWAS colocalization of plant height in the middle phase and 

PTCH in late phase. g, The haplotypic effects of BRD1 on plant height across 18 time 

points. h, Functional relocation of BRD1 on multiple traits across periods. PH denotes 

plant height, ELW denotes ear leaf width, PAR denotes the perimeter/projected area 

ratio, PTCH denotes the perimeter_convex.hull. 

 

 

Fig. 5. Cross-period remodeling interactions explained the early-specific effect of 

ZmEBF4 on plant height in maize. a, Interaction types between QTLs (bi-QTLs) 

detected across the whole periods, bi-QTLs exceeding the significance threshold 

(p<=1.15e-4) were defined as Sig_Interact, which were categorized into three types 

based on the individual significance of each constituent QTL: SS (both QTLs 

significant), SN (only one QTL significant) and NN (neither QTL significant). b, The 

variation of genome-wide interactions between early and late stages. The colored line 
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indicated the interaction type, and the line width indicated the significance of the 

interaction. c, GWAS colocalization of PH in early and late phase. d, The haplotypic 

effects of chr4.s_238092533 on plant height across 18 time points. e, The haplotype 

effects of chr4.s_238092533 and chr1.s_253261589 on plant height, along with their 

epistatic interaction effects in early and late stages, the genotypes of line B73 is GG 

(chr4.s_238092533) and TT (chr1.s_253261589). f, GWAS colocalization of PH and 

expression level of ZmEBF4, colored dot represents the SNP above the threshold. g, 

Field-grown picture of WT and mutant line of ZmEBF4 in Hainan, scale bar 

corresponds to 20cm. h, Comparison of PH among mutant line of ZmEBF4 and WT 

on V7-V8 and R2-R3 at Hainan from China. PH denotes plant height. 
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Fig. 6. The trajectory modeling integrating growth variation empower the 

breeding design. a, Schematic diagram of growth trajectory modeling and parameter 

quantification. b, Model fitting performance of growth trajectories across all inbred 

lines. c, The identification of the i-trait and period most correlated with growth 

parameters. The size and color density of the dots indicated the absolute value of the 

correlation coefficient. The dot with red border indicated the highest correlated period. 

d, GWAS results of five trajectory parameters. The significant SNPs were indicated 

with colored dots that grouped by different parameters. The red dashed horizontal line 
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indicated the GWAS threshold (p≤3.5×10
-7

), suggestive threshold (p≤3.9×10
-5

) was 

denoted as blue dashed horizontal line. AOS denotes axis of symmetry. e, The 

comparison of predicted trajectory parameters between the hybrids with high and low 

heterosis. f, The potential of hybrid design via trajectory complements between 

female and male parents. 
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